# Workshop 7 How to Assess and Balance PhD Supply and Demand, Now and in the Future

## Major Themes for Addressing the Problem/Challenge:

- 1. Data: What do we need, how do we get it, how do we use it?
- 2. Motives and incentives for scientific training
- 3. Balancing skills that are taught with skills that will be needed/used in careers
- 4. What is the market structure? How is it changing?

# Data: What do we need, how do we get it, how do we use it?

### Plan and Metrics:

- 1. Understand data available at home institution (who owns it; what data are collected; do data cover both PhD students and postdocs?)
- 2. Standardization of data fields at your institution (commit to monitoring when new approaches emerge nationally e.g. CGS, BEST, AAMC)
- 3. Establish institutional plan to track outcomes (various approaches possible; ideally test with a pilot group and learn how it works)
- 4. Work to get uniform ID for all (e.g., ERA Commons; ORCID); make sure to use ID system that will be adopted worldwide; NIH and LinkedIn as partners
- 5. Encourage and form regional collaborations to share data sets and approaches

# **Motives and Incentives for Scientific Training**

Action Plan for Master's Degree Implementation:

- Execute feasibility study of incorporating Master's degree into PhD without increasing time-to-degree (goal is to establish whether the student is interested and qualified to pursue a PhD)
- 2. Establish criteria for obtaining a Master's (training package, examination, requirements for graduation)
- 3. Gather Industry, Academy, Funding Agencies for buy-in

### Action Plan - Other Areas:

- 1. Implement 50% salary cover by the university over 10 years
- 2. Implement "% Effort per Trainee" over 10 years

# Balancing Skills That Are Taught with Skills That Will Be Needed/Used in Careers

### Plan:

- 1. Start with a pilot group
- 2. Get faculty buy-in; reassure that they will be supported; keep "PI" as a career track for trainees
- 3. Build coalitions through existing groups & mechanisms (e.g., CIC, AAU, Ivy-Plus, professional societies)
- 4. Agreement of competencies that are broad and transferable (refer to list produced by NPA per core competencies, for example)
- 5. Get outside stakeholder input (employers, alumni)
- 6. Leverage existing institutional expertise (e.g., PDO, PDA, career office)
- 7. Address issues of cost (time and money)

### Metrics:

- 1. Competency-based learning models
- 2. Track and assess career paths of graduates (more feasible for grad students; more challenging for postdocs)
- 3. Does expected career trajectory broaden with progression through program?
- 4. Collect and analyze IDPs
- 5. Gather program outcome data (e.g., trainee papers, time-to-degree)

# What Is the Market Structure? How Is It Changing?

# Plan

- 1. Create an advisory board to help students and postdocs for career development, create an inventory of questions, connect with external experts
- 2. Internal committee (faculty/students/postdocs/senior-level administrators)
- 3. Eternal experts (employers, economists, gov't reps, psychologist, alumni)

### Assessment metrics

- 1. Survey students and postdocs for satisfactions
- 2. Track trainees for their career projections, destinations, etc.
- 3. Duration of PhD or postdoc (number of years)

### Prioritization

- 1. Focus on grad students first then move to postdocs (because of greater oversight, and can track earlier and follow for a longer time)
- 2. Start with a smaller group (e.g., one department) before moving onto the entire biomedical enterprise